P
 Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE in
Chemistry (4CH1) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4CH1_1CR_msc_20190822
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
$\begin{array}{lll}1 & \mathrm{a} & \text { (i) } \\ & & \\ & & \\ & \text { (ii) } \\ & & \\ & \text { (iii) }\end{array}$	melting		1
	evaporation		1
	sublimation		1
b	A description that refers to three of		
	M1 (particles) close together	ALLOW tightly packed/ touching	
	M2 (particles) regularly arranged	ALLOW arranged in a lattice	
		M1 and M2 can be scored from a diagram	3
	M3 (particles) do not move around M4 (particles) vibrate (about a fixed position)	ALLOW do not move freely	
		I GNORE references to fixed shape and volume	Total 6

Question number	Answer	Notes	Marks
3 a	A description/diagram which makes reference to the following points	ALLOW water for solvent throughout	
	M1 diagram shows solvent above pencil lhe inks on the (pencil) line. OWTTE line only M1 and M2 can be scored		
M2 pour some solvent into the bottom of the beaker OWTTE M3 place the paper in the beaker so that the spots are (just) above the level of the solvent OWTTE	DO NOT ALLOW M3 if words and diagram contradict each other	4	
M4 leave until the solvent has risen up the paper (to the top/near the top and then take paper out) OWTTE	ALLOW leave until inks stopped separating OWTTE		

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \(\begin{array}{ccc}4 \mathrm{a} \& \\ \& \\ \& \\ \& \\ \& \\ \& \text { b } \& \text { (i) }\end{array}\) \& \begin{tabular}{l}
M1 (a compound containing the elements/atoms) hydrogen and carbon \\
M2 only
\[
\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\] \\
M1 all formulae correct \\
M2 balancing of correct formulae
\end{tabular} \& \begin{tabular}{l}
ALLOW molecule/substance for compound \\
REJECT element/atom/ mixture for compound \\
REJECT ions/molecules for elements/atoms \\
ACCEPT other equivalent words eg solely M2 DEP on mention of hydrogen and carbon in M1 \\
ALLOW fractions/multiples \\
I GNORE state symbols
\end{tabular} \& 2

2

\hline | (ii) |
| :--- |
| (iii) | \& | Any two from |
| :--- |
| M1 carbon monoxide |
| M2 carbon |
| M3 water |
| reduces/limits capacity of blood to transport oxygen OWTTE | \& | ACCEPT correct formulae/symbol |
| :--- |
| ALLOW soot for carbon |
| ACCEPT prevents blood from carrying oxygen OWTTE |
| ACCEPT correct references to haemoglobin eg prevents haemoglobin from carrying oxygen | \& 2

1

2

\hline
\end{tabular}

b(iv)			
	M2	in either order	
(ii) (iii)	$\begin{equation*} \mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}} \tag{i} \end{equation*}$ (contains a carbon to carbon) double bond A description linking the following two points M1 add bromine water/solution M2 (bromine water/solution) is decolourised / turns (from orange to) colourless	ALLOW (contains a carbon to carbon) multiple bond ALLOW $\mathrm{Br}_{2}(\mathrm{aq})$ I GNORE clear REJECT discoloured If initial colour of bromine water given it must be correct- ALLOW any combination of orange/yellow/brown M2 dep on M1 or near miss ALLOW M1 add acidified potassium manganate(VII) M2 (potassium manganate(VII)) is decolourised/turns (from purple to) colourless REJECT any other initial colour	1 1 2 Total 13

Question number	Answer	Notes	Marks
6 (a)	- Dividing percentages by atomic masses - Correct results of divisions - Obtaining ratio by dividing results by smallest value	0 marks if division by atomic numbers or calculation upside down	3
	$\begin{array}{\|rrrr} \hline \text { M2 } & 3.2 & 4.8 & 1.6 \\ \text { M3 } & \frac{3.2}{1.6} & \frac{4.8}{1.6} & \frac{1.6}{1.6} \\ & (=2 & 3 & 1) \end{array}$		
	Alternative method - Calculating Mr of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ - Working for finding ratio of each element - Evaluation of correct percentages M1 $\quad \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}(=24+3+35.5)=62.5$ $\begin{array}{cccc}\text { M2 } & \mathrm{C} & \mathrm{H} & \mathrm{Cl} \\ & \underline{24} & \underline{3} & \underline{35.5} \\ & 62.5 & 62.5 & 62.5\end{array}$ M3 all $\times 100$ $=38.4(\%) 4.8(\%) 56.8(\%)$		

Question Number		Answer	Notes	Marks
(b)	(i)	FeCl_{3}	REJECT incorrect use of upper and lower case letters, and superscript ACCEPT correct formula as ions $\mathrm{Fe}^{3+}\left(\mathrm{Cl}^{-}\right)_{3}$	1
	(ii)	to increase the rate of the reaction/ to speed up the reaction	ALLOW references to (providing reaction pathway of) lower activation energy	1
	(iii)	gives out heat (energy)	ACCEPT thermal energy NOT energy alone I GNORE reference to negative $\triangle \mathrm{H}$	1
	(iv)	A addition		
		B is incorrect as this is not a displacement reaction C is incorrect as this is not a neutralisation reaction D is incorrect as this is not a substitution reaction		1
	(v)	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{HCl}$	I GNORE incorrect use of lower/upper case and superscripts	1

Question numbe	Answer	Notes	Marks
9 (a)	An explanation linking the following three points M1 covalent bonds are strong M2 many (covalent) bonds (need to be broken) M3 a large amount of (thermal/heat) energy is needed to break the bonds	ACCEPT strong (electrostatic) forces of attraction between the nuclei of atoms and the bonding electrons I GNORE more energy NOT just heat Any mention of intermolecular forces/forces between molecules or ions/ionic bonding /metallic bonding scores 0 out of 3	3

(b) (i)	An explanation linking the following two points M1 the intermolecular forces (of attraction) are weak	ACCEPT London forces/dispersion forces/dipole-dipole forces/Van der Waals forces ALLOW the attractions between the molecules are weak ALLOW weak intermolecular bonds		
M2 therefore little/less				
(thermal/heat) energy needed to				
overcome the forces (of attraction)			\quad	(ii)
:---				

(c)	An explanation linking any five of the following six points but must include M3 and M6 for full marks (graphite is soft because) M1 the structure is in layers M2 there are weak forces/attractions between the layers (of atoms) M3 layers can slide/slip over each other (graphite conducts electricity because) M4 each carbon atom is (covalently) bonded to three other carbon atoms M5 one delocalised electron per carbon atom M6 delocalised electrons flow/move (through the structure)	If reference to weak intermolecular forces or layers of molecules/ions no M2 ALLOW air /water (molecules) trapped between the layers ALLOW layers can easily flake off M2/ M3 can subsume M1 ALLOW one unbonded/free/spare electron per carbon atom ALLOW (only) three (of the carbon) electrons involved in (covalent) bonding ALLOW not all (of the carbon) electrons involved in (covalent) bonding ALLOW are mobile I GNORE free electrons I GNORE sea of electrons I GNORE references to carrying charge/current To score M6 the term delocalised electrons must be seen somewhere If reference to ions for conduction of electricity no M4 M5 M6	

(ii)	$\mathrm{n}\left(\mathrm{CuSO}_{4}\right)=(2.00 \div 159.5)=0.0125$	ACCEPT any number of sig figs except 1	1
(iii)	- Division of Q by n - Evaluation including conversion of J to kJ - Answer given with - sign Example calculation M1 Q OR $\underset{\mathrm{n}}{\underline{0.0125}} \quad$ OR $\frac{\text { answer to } \mathrm{b}(\mathrm{i})}{\text { answer to } \mathrm{b}(\mathrm{ii})}$ $\mathrm{M} 2 \Delta H=(-) 104(\mathrm{~kJ} / \mathrm{mol})$ M3 Negative sign included	ACCEPT any number of sig figs in the numerator except 1 ACCEPT any number of sig figs ALLOW ECF from M1 Correct answer with no working and no sign or incorrect sign scores 2 Correct answer with no working and correct sign scores 3 104.5(04) 104.48104 .8 105 all score 2 $\begin{aligned} & -104.5(04)-104.48-104.8 \\ & -105 \text { all score } 3 \end{aligned}$	

Total marks 110

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

