

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE in Chemistry (4CH1) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019

Publications Code 4CH1_1CR_msc_20190822 All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Qu	ıesti	on number	Answer	Notes	Marks
1	а	(i)	melting		1
		(ii)	evaporation		1
		(iii)	sublimation		1
	·				
	b		A description that refers to three of the following points		
			M1 (particles) close together	ALLOW tightly packed/ touching	
			M2 (particles) regularly arranged	ALLOW arranged in a lattice	
				M1 and M2 can be scored from a diagram	3
			M3 (particles) do not move around	ALLOW do not move freely	
			M4 (particles) vibrate (about a fixed position)	move freely	
				I GNORE references to fixed shape and volume	
				VOIUITIE	Total 6

Question number	Answer		Notes	Marks
2 a l	potassium reacts more vigorously with	✓		
	water than sodium			
	potassium sinks to the bottom of the water			
	bubbles of oxygen gas are produced			3
	a lilac flame is seen	✓		
	potassium moves around	✓		
	potassium oxide solution is formed			
b (i)	any value or range between 11 and 14			1
(ii)	OH-		ACCEPT HO	
			I GNORE any name	1
С	$4 \text{Na} + (1)\text{O}_2 \rightarrow 2 \text{Na}_2\text{O}$		ACCEPT multiples or	1
			fractions	
				Total 6

Question number	Answer	Notes	Marks
3 a	A description/diagram which makes reference to the following points	ALLOW water for solvent throughout If diagram shows solvent above pencil line only M1 and M2 can be scored	
	M1 put (separate) spots of each of the inks on the (pencil) line. OWTTE		
	M2 pour some solvent into the bottom of the beaker OWTTE		4
	M3 place the paper in the beaker so that the spots are (just) above the level of the solvent OWTTE	DO NOT ALLOW M3 if words and diagram contradict each other	
	M4 leave until the solvent has risen up the paper (to the top/near the top and then take paper out) OWTTE	ALLOW leave until inks stopped separating OWTTE	
		ALLOW leave until spots/dyes stopped moving OWTTE	
		I GNORE references to leaving for a specified length of time	

Question number	Answer	Notes	Marks
3 b	An explanation which links the following two points M1 ink would/might dissolve in the solvent OR pencil would not dissolve in the solvent	ALLOW water for solvent	
	M2 ink would interfere with/contaminate the results OWTTE	ALLOW would produce spots/other colours/get mixed up with inks/move up the paper OWTTE	
	OR	I GNORE smudge/run	
	pencil would not interfere with/contaminate the results OWTTE	ALLOW pencil would not produce spots/not produce other colours/not get mixed up with the inks/not move up the paper OWTTE	2

Question number	Answer	Notes	Marks
3 c (i)	For all parts of 3c an explanation which links each of the two points	ALLOW blob/dot/mark OWTTE for spot	
	M1 V M2 as it stayed on the start line/did not move	ACCEPT did not produce spots/did not separate	2
		ALLOW has R_f value of 0 M2 DEP on M1	۷
(ii)	M1 X and Z		
	M2 as they both have a dye/spot that travelled the furthest (up the paper)	ALLOW both have spot closest to solvent front	
		ALLOW have highest R _f value(s)	2
		M2 DEP on M1	
(iii)	M1 V and W		
	M2 as they both only form one spot (on the paper)	ACCEPT as W only has one spot and cannot tell about V (as it does not move/is insoluble)	2
		ACCEPT reference to the other inks/X, Y, Z form more than one spot	
		M2 DEP on M1	

Question number	Answer	Notes	Marks
3 d	 Working or equation for R_f value Calculating the R_f value Giving the answer to 2 significant figures 		3
	M1 <u>4.3</u> 6.5	Award one mark if correct equation for finding R _f value seen	
	M2 0.6615	ACCEPT any number of sig fig	
	M3 0.66	must be 2 sig fig	
		0.66 with no working scores 3	
		correct answer given to 3 or more sig fig with no working scores 2	
		M3 subsumes M2	
		can score M2 and M3 ECF provided use 4.3 and 6.5 and do a division	
			Total 15

Question number	Answer	Notes	Marks
4 a	M1 (a compound containing the elements/atoms) hydrogen and carbon	ALLOW molecule/substance for compound	
		REJECT element/atom/ mixture for compound	
		REJECT ions/molecules for elements/atoms	2
	M2 only	ACCEPT other equivalent words eg solely M2 DEP on mention of hydrogen and carbon in M1	
b (i)	$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$		
	M1 all formulae correct	ALLOW	
	M2 balancing of correct formulae	fractions/multiples	2
		I GNORE state symbols	
(ii)	Any two from		
	M1 carbon monoxide	ACCEPT correct	
	M2 carbon	formulae/symbol	2
	M3 water	ALLOW soot for carbon	
(iii)	reduces/limits capacity of blood to transport oxygen OWTTE	ACCEPT prevents blood from carrying oxygen OWTTE	1
		ACCEPT correct references to haemoglobin eg prevents haemoglobin from carrying oxygen	
	M1		2

			1	
	b(iv)	H H-C-H H H H H-C-C-C-C-H H H H H		
		M2 H-C-H H-C-H H-C-H H-C-H H-C-H H-C-H	in either order	
С	(i)	C_nH_{2n}		1
	(ii)	(contains a carbon to carbon) double bond	ALLOW (contains a carbon to carbon) multiple bond	1
	(iii)	A description linking the following two points		2
		M1 add bromine water/solution	ALLOW Br₂(aq)	
		M2 (bromine water/solution) is decolourised / turns (from orange to) colourless	I GNORE clear REJECT discoloured	
			If initial colour of bromine water given it must be correct-ALLOW any combination of orange/yellow/brown	
			M2 dep on M1 or near miss ALLOW M1 add acidified potassium manganate(VII) M2 (potassium manganate(VII)) is decolourised/turns (from	
			purple to) colourless REJECT any other initial colour	Total 13

Question	Answer	Notes	Marks
number 5 a (i)	An explanation linking the following two points		
	M1 to stop acid (spray) leaving the flask OWTTE	ALLOW so that only gas can escape (from flask) OWTTE	
		ALLOW so the only cause of mass loss is gas (escaping)	
		REJECT stops gas escaping	2
	M2 as (without setten weel) mass loss	REJECT references to substances/impurities/gas es entering flask	
	M2 as (without cotton wool) mass loss would be too large OWTTE	ALLOW as with cotton wool the mass does not decrease by more than it should OWTTE	
a (ii)	B gas is given off		
	A is incorrect as particles moving does not result in mass loss C is incorrect as heat energy being produced does not result in mass loss D is incorrect as marble chips dissolving does not result in mass loss		1
b	$CaCO_3$ (s) + 2HCl (aq) \rightarrow $CaCl_2$ (aq) + H_2O (l) + CO_2 (g)	ALLOW upper case	
	All 5 correct scores 2 4, 3 correct scores 1		2

Question number	Answer	Notes	Marks
5 c	M1 curve steeper than the original curve M2 levels off at the same mass loss/place as		2
	original curve		
d (i)	An explanation linking the following three points		3
	M1 (rate) increases		
	M2 more particles in the same volume	ALLOW particles closer together	
	M3 more (successful) collisions per unit time / more frequent (successful) collisions	If reference to particles move faster/have more energy MAX 1	3
		I GNORE references to increased chance/probability of collisions	
(ii)	An explanation linking the following three points		
(")	M1 (rate) increases		
	M2 (mean kinetic) energy of particles increases	ALLOW particles move faster	
		ALLOW more particles have energy ≥ activation energy	
	M3 more successful collisions per unit time / more frequent successful collisions OWTTE	ALLOW reference to more frequent collisions between particles having ≥ activation energy	
			Total 13

Question	Answer	Notes	Marks
number 6 (a)	 Dividing percentages by atomic masses Correct results of divisions Obtaining ratio by dividing results by smallest value 	0 marks if division by atomic numbers or calculation upside down	war no
	M1 C H Cl 38.4 4.8 56.8 12 1 35.5		3
	M2 3.2 4.8 1.6		
	M3 <u>3.2</u> <u>4.8</u> <u>1.6</u> 1.6 1.6		
	(= 2 3 1)		
	Alternative method		
	 Calculating Mr of C₂H₃Cl Working for finding ratio of each element Evaluation of correct percentages 		
	M1 C_2H_3CI (= 24 + 3 + 35.5) = 62.5		
	M2 C H Cl <u>24</u> <u>3</u> <u>35.5</u> 62.5 62.5 62.5		
	M3 all x 100		
	= 38.4(%) 4.8(%) 56.8(%)		

Question Number	Answer	Notes	Marks
(b) (i)	FeCl ₃	REJECT incorrect use of upper and lower case letters, and superscript ACCEPT correct formula as ions	1
(ii)	to increase the rate of the reaction/ to speed up the reaction	Fe ³⁺ (Q ⁻) ₃ ALLOW references to (providing reaction pathway of) lower activation	1
(iii)	gives out heat (energy)	ACCEPT thermal energy NOT energy alone	1
		I GNORE reference to negative △H	
(iv)	A addition		
	B is incorrect as this is not a displacement reaction C is incorrect as this is not a neutralisation reaction D is incorrect as this is not a substitution reaction		1
(v)	C ₂ H ₄ Cl ₂ → C ₂ H ₃ Cl + HCl	I GNORE incorrect use of lower/upper case and superscripts	1

	Question number	Answer	Notes	Marks
6	(c) (i)	M1 displayed formula of chloroethene H H H H	I GNORE bond angles I GNORE brackets/n	3
		M2 correct displayed formula with single bond between C atoms H H C—C—C—	If double bond in repeat unit no M2 or M3	
		H CI	I GNORE brackets/n	
		M3 extension bonds shown on C atoms	more than one correct repeat unit with extension bonds scores 1 mark out of M2/M3	
	(ii)	M1 2 shared pairs between C atoms M2 rest of structure fully correct	ACCEPT any combination of dots and crosses.	2
		• • •	I GNORE inner shells even if incorrect	
		H * C * X C * H	M2 DEP on M1	
				Total 13

Г		Ougsti	00			
		Questi numb		Answer	Notes	Marks
	7	а	(i)	M1 Mg ²⁺		2
				M2 NO ₃ -		
	7	а	(ii)	Part 1 making magnesium nitrate solution - a description linking any three of the following points		6
				M1 warm / heat the acid (in a beaker/flask)	REJECT boil	
				M2 add magnesium oxide (to acid a little at a time) until in excess /no more dissolves		
				M3 stir	M3 DEP on use of acid and oxide	
				M4 filter to remove excess magnesium oxide/excess solid		

	,
Part 2 using (magnesium nitrate) solution/filtrate - a description linking any three of the following points M5 heat/boil (magnesium nitrate solution/filtrate)	NOTE if added excess but not filtered off – MAX 2 for Part 2
solution/filtrate) M6 until crystals form in a cooled sample/on glass rod	ACCEPT to crystallisation point / to form a saturated solution / until crystals start to form / to remove some of the water
M7 leave the solution to cool/crystallise	M6 DEP M5
M8 filter (to remove crystals)	ACCEPT decant the (excess) solution IGNORE references to washing the crystals
M9 suitable method to dry the crystals eg using filter paper/using paper towel/in warm oven/in a desiccator	REJECT hot oven or any method of direct heating e.g. Bunsen
	ALLOW leave to dry but not just dry the crystals M9 DEP M8 No M9 if then wash crystals after drying

7 (b	o) (i)	24 + (2 x 14) + (6 x 16) + (12 x 1) + (6 x 16) or equivalent working	Some working must be seen ALLOW 24 + 124 +108	1
	(ii)	 Calculate moles of magnesium nitrate Setting out of calculation of mass Final answer 		3
		M1 moles = (0.05 / 2) OR 0.025		
		M2 mass = 0.025 x 256		
		M3 6.4 (g)	6.4(g) with no working scores 3	
			only ALLOW ECF M2 from M1	
	(iii)	Setting out of calculationFinal answer		2
		M1 $\frac{4.8}{6.4} \times 100$ M2 75 (%) OR M1 $\frac{4.8}{6} \times 100$	75 (%) with or without working scores 2 marks	
		M2 80 (%)	80 (%) with or without working scores 2 marks	
			ALLOW ECF from b(ii) $\underline{6.4} \times 100$ 4.8 AND $\underline{6} \times 100$ 4.8 both score 0	
			Answers of 25% and 20% score 1	Total 14

Marks	Notes		Answer	on number	Questi
1	ACCEPT correct chemical equation I GNORE ionic equation	water	m hydroxide + nitric acid → sodium nitrate+	(i) sodiun	8 (a)
2		points	xplanation which links the following two រុ	(ii) An ex	
	ALLOW poor/non- conductor of heat		oolystyrene is an insulator	M1 po	
	ALLOW no heat lost		ess heat is lost (to the surroundings)	M2 le	
	ALLOW (polystyrene) retains more heat				
1	ALLOW reverse arguments for glass beaker		one from	(iii) Any o	
1	ACCEPT (safety) goggles		should) wear eye protection should) wear gloves	(she	
	ALLOW safety glasses				
	ACCEPT (safety) goggles ALLOW safety			(she	

		T	<u> </u>	I
(b)	(i)	M1 all points plotted correctly to +/- half a square		3
	clip	M2 first best fit line drawn with a ruler M3 second best fit line drawn with a ruler 25	Award MAX 1 if ruler not used for both DO NOT PENALISE HERE I F LINES DO NOT CROSS	
	(ii)	M1 volume reading read from graph +/- 0.5 (cm³) M2 temp reading read from graph to +/- 0.1 (°C)	Award 1 mark if values correct but reversed. If lines do not meet or cross or a curve is drawn between the lines 0 marks for (ii)	Total 9

Question number	Answer	Notes	Marks
9 (a)	An explanation linking the following three points		3
	M1 covalent bonds are strong	ACCEPT strong (electrostatic) forces of attraction between the nuclei of atoms and the bonding electrons	
	M2 many (covalent) bonds (need to be broken)		
	M3 a large amount of (thermal/heat) energy is needed to break the bonds	I GNORE more energy	
		NOT just heat	
		Any mention of intermolecular forces/forces between molecules or ions/ionic bonding /metallic bonding scores 0 out of 3	

(b) (i)	An explanation linking the following two points		2
	M1 the intermolecular forces (of attraction) are weak	ACCEPT London forces/dispersion forces/dipole-dipole forces/Van der Waals forces ALLOW the attractions between the molecules are weak ALLOW weak intermolecular bonds	
	M2 therefore little/less (thermal/heat) energy needed to overcome the forces (of attraction)	NOT just heat ALLOW little/less energy needed to separate the (fullerene) molecules ALLOW little/less energy is required to break the bonds as long as it is clear that the bonds are between molecules Any mention of (breaking of) covalent/ionic/metallic bonds scores 0 out of 2	
(ii)	Any one from the medicine can fit inside (the C ₆₀ molecule/it) (the C ₆₀ molecule/it) will not react with the blood/medicine (the C ₆₀ molecule/it) is non-toxic	ALLOW any other sensible suggestion eg C ₆₀ molecule/it is inert/unreactive	1

An explanation linking any five of		5
the following six points but		
With the structure is in layers		
M2 there are weak forces/attractions between the layers (of atoms)	If reference to weak intermolecular forces or layers of molecules/ions no M2	
	ALLOW air /water (molecules) trapped between the layers	
M3 layers can slide/slip over each other	ALLOW layers can easily flake off	
(graphite conducts electricity because)	M2/M3 can subsume M1	
M4 each carbon atom is (covalently) bonded to three other carbon atoms		
M5 one delocalised electron per carbon atom	ALLOW one unbonded/free/spare electron per carbon atom	
	ALLOW (only) three (of the carbon) electrons involved in (covalent) bonding	
	ALLOW not all (of the carbon) electrons involved in (covalent) bonding	
M6 delocalised electrons flow/move (through the structure)	ALLOW are mobile	
(aoagii ale salaetare)	I GNORE free electrons I GNORE sea of electrons I GNORE references to	
	To score M6 the term delocalised electrons must be seen somewhere If reference to ions for conduction of electricity	Total
	must include M3 and M6 for full marks (graphite is soft because) M1 the structure is in layers M2 there are weak forces/attractions between the layers (of atoms) M3 layers can slide/slip over each other (graphite conducts electricity because) M4 each carbon atom is (covalently) bonded to three other carbon atoms M5 one delocalised electron per carbon atom	must include M3 and M6 for full marks (graphite is soft because) M1 the structure is in layers M2 there are weak forces/attractions between the layers (of atoms) If reference to weak intermolecular forces or layers of molecules/ions no M2 ALLOW air /water (molecules) trapped between the layers M3 layers can slide/slip over each other (graphite conducts electricity because) M4 each carbon atom is (covalently) bonded to three other carbon atoms M5 one delocalised electron per carbon atom M6 one delocalised electron per carbon atom ALLOW one unbonded/free/spare electron per carbon atom ALLOW (only) three (of the carbon) electrons involved in (covalent) bonding ALLOW not all (of the carbon) electrons involved in (covalent) bonding ALLOW are mobile I GNORE free electrons I GNORE sea of electrons I GNORE sea of electrons I GNORE references to carrying charge/current To score M6 the term delocalised electrons must be seen somewhere If reference to ions for

Que	stion n	umber	Answer	Notes	Marks
10	(a)	(i)	(because) the zinc (powder) is in excess	ALLOW (because) not all zinc is used up/reacts ALLOW (because) some zinc is left over ALLOW because copper sulfate is limiting reagent/all reacted/all used up	1
		(ii)	M1 blue	ALLOW qualifiers such as dark/light but no other colours	2
			M2 to colourless	I GNORE clear ALLOW no colour ALLOW decolourised REJECT discoloured	
	(b)	(i)	Calculation of temperature		3
			 increase Substitution into Q = mcΔT Evaluation 		
			Example calculation		
			M1 (31.5 - 19.0) OR 12.5		
			M2 $Q = 25 \times 4.18 \times 12.5$	25 x 4.18 x (31.5 - 19.0) scores M1 and M2	
			M3 Q = 1310 (J)	Calculator answer is 1306.25 ACCEPT any number of sig fig greater than 1	
				Correct answer to 3 or more sig fig without working scores 3	
				1300 with no working scores 0	
				If answer in kJ unit must be given	
				ALLOW use of 4.2 for all 3 marks (= 1312.5)	

(ii)	$n(CuSO_4) = (2.00 \div 159.5) = 0.0125$	ACCEPT any number of sig figs except 1	1
(iii)	 Division of Q by n Evaluation including conversion of J to kJ Answer given with - sign 		3
	Example calculation M1 Q OR 1300 OR answer to b(i) n 0.0125 answer to b(ii)	ACCEPT any number of sig figs in the numerator except 1	
	M2 ΔH = (-) 104 (kJ/mol)	ACCEPT any number of sig figs	
	M3 Negative sign included	ALLOW ECF from M1 Correct answer with no working and no sign or incorrect sign scores 2	
		Correct answer with no working and correct sign scores 3	
		104.5(04) 104.48 104.8 105 all score 2	
		-104.5(04) -104.48 -104.8 -105 all score 3	Total 10

Total marks 110

